
1

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Category Theory for Beginners*

Dr Steve Easterbrook
Associate Professor,

Dept of Computer Science,
University of Toronto
sme@cs.toronto.edu

*slides available at http://www.cs.toronto.edu/~sme/presentations/cat101.pdf

2

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Key Questions for this tutorial
• What is Category Theory?

• Why should we be interested in Category Theory?

• How much Category Theory is it useful to know?

• What kinds of things can you do with Category Theory in
Software Engineering?

• (for the ASE audience)
Does Category Theory help us to automate things?

3

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

• An explanation of “Colimits”

• My frustration:
� Reading a maths books (especially category theory books!) is like reading a program

without any of the supporting documentation. There’s lots of definitions, lemmas, proofs,
and so on, but no indication of what it’s all for, or why it’s written the way it is.

� This also applies to many software engineering papers that explore formal foundations.

By way of introduction...

A B

fThe colimit
of A and B A co-cone

over A and B

4

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Outline
(1) An introduction to categories

� Definitions
� Some simple examples

(2) Motivations
� Why is category theory so useful in mathematics?
� Why is category theory relevant to software engineering?

(3) Enough category theory to get by
� some important universal mapping properties
� constructiveness and completeness

(4) Applying category theory to specifications
� Specification morphisms
� Modular Specifications
� Tools based on category theory

you
are
here

5

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Definition of a Category
• A category consists of:

� a class of objects
� a class of morphisms (“arrows”)
� for each morphism, f, one object as the domain of f

and one object as the codomain of f.
� for each object, A, an identity morphism which has

domain A and codomain A. (“IDA”)
� for each pair of morphisms f:A→B and g:B→C, (i.e.

cod(f)=dom(g)), a composite morphism, g � f: A→C

• With these rules:
� Identity composition: For each morphism f:A→B,

 f � IDA = f and IDB � f = f
� Associativity: For each set of morphisms f:A→B,

g:B→C, h:C→D,
(h � g) � f = h � (g � f)

A

IDA

gf

g ���� f

f g h
h ���� g

g ���� f
(h ���� g) ���� f = h ���� (g ���� f)

A Bf

6

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Understanding the definition
Which of these can be valid categories?

Note: In this notation, the identity morphisms are assumed.

7

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Understanding the definition
Proof that is not a category:

A B
f

g

h

IDA IDB

Composition:
f � h = IDB

f � g = IDB

h � f = IDA

g � f = IDA

Associativity:
h � f � g = (h � f) � g

= IDA � g
= g

h � f � g = h � (f � g)
= h � IDB

= h

Hence: g = h

.categories somein may it although ,οο :Note ghfgfh =→/=

category. a becan Hence,

✔✔✔✔
okay so far

not okay

8

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Challenge Question
(For the experts only)

Can this be a category?
These are

not
identities

9

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

coffeetea
juice

water

kurt

earl
stan

Example category 1
• The category of sets (actually, “functions on sets”)

� objects are sets
� morphisms are functions between sets

E.g. E.g.

eric

alice
sam

“likes for
breakfast”

“best friend”

“what best
friend likes for

breakfast”

Real
numbers

Temperatures

measure
in ºC

measure
in ºF

convert
ºF to ºC

convert
ºC to ºF

bob

Integers

round

cast to real

What are
the missing
morphisms?

10

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

E.g.
The partial order n, formed from the first

n natural numbers
Here, n = 4

Example category 2
• Any partial order (P, ≤≤≤≤)

� Objects are the elements of the partial order
� Morphisms represent the ≤ relation.
� Composition works because of the transitivity of ≤

1

2
30

4

11

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Outline
(1) An introduction to categories

� Definitions
� Some simple examples

(2) Motivations
� Why is category theory so useful in mathematics?
� Why is category theory relevant to software engineering?

(3) Enough category theory to get by
� some important universal mapping properties
� constructiveness and completeness

(4) Applying category theory to specifications
� Specification morphisms
� Modular Specifications
� Tools based on category theory

you
are
here

12

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

So what? (for the mathematician)
• Category theory is a convenient new language

� It puts existing mathematical results into perspective
� It gives an appreciation of the unity of modern mathematics

• Reasons to study it
� As a language, it offers economy of thought and expression
� It reveals common ideas in (ostensibly) unrelated areas of mathematics
� A single result proved in category theory generates many results in different areas of

mathematics
� Duality: for every categorical construct, there is a dual, formed by reversing all the

morphisms.
� Difficult problems in some areas of mathematics can be translated into (easier) problems in

other areas (e.g. by using functors, which map from one category to another)
� Makes precise some notions that were previously vague, e.g. ‘universality’, ‘naturality’

“To each species of mathematical structure, there corresponds a category, whose
objects have that structure, and whose morphisms preserve it” - Goguen

13

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Some more definitions
• Discrete category:

� All the morphisms are identities

• Connected category:
� For every pair of objects, there is at least

one morphism between them

• Full sub-category:
� A selection of objects from a category,

together with all the morphisms between
them.

IDA

IDC

IDB

Example:

Example:

original category: full sub-category:

functor

14

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Inverses and Isomorphisms
• Identity morphism:

� For each object X, there is an identity morphism, IDX, such that:
� if f is a morphism with domain X, f � IDX = f
� if g is a morphism with codomain X, IDX � g = g

• Inverse
� g:B→A is an inverse for f:A→B if:

f � g = IDB

g � f = IDA

� If it exists, the inverse of f is denoted f-1

� A morphism can have at most one inverse

• Isomorphism
� If f has an inverse, then it is said to be an isomorphism
� If f:A→B is an isomorphism, then A and B are said to be isomorphic

f
X

IDX

g

BA
IDA IDBf

g

15

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Example category 3
• Category of geometric shapes (Euclid’s category)

� objects are polygonal figures drawn on a plane
� morphisms are geometric translations of all the points on the polygon such that distances

between points are preserved.
� Objects that are isomorphic in this category are called ‘congruent figures’

p

q

r
P'

r'
q'

p

q

r
P'

r'
q'

16

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Example category 4
• Category of algebras

� Each object is a sort + a binary function over that set
� Each morphism is a translation from one algebra to another, preserving the structure

E.g. E.g.

),(0 ×ℜ >
),(+ℜ

),(+ℜ

exponentiation

doubling

Works because
e(a+b) = ea x eb

Works because
2(a+b) = 2a + 2b

)},evenodd,({ +

)},negpos,({ ×

17

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

• Definition of functor:
� Consider the category in which the objects are categories and the morphisms are mappings

between categories. The morphisms in such a category are known as functors.
� Given two categories, C and D, a functor F:C→D maps each morphism of C onto a

morphism of D, such that:
F preserves identities - i.e. if x is a C-identity, then F(x) is a D-identity
F preserves composition - i.e F(f � g) = F(f) � F(g)

• Example functor
� From the category of topological spaces and continuous maps

to the category of sets of points and functions between them

Functors

18

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

So what? (for the software engineer)

• Category theory is ideal for:
� Reasoning about structure, and mappings that preserve structure
� Abstracting away from details.
� Automation (constructive methods exists for many useful categorical structures)

• Applications of Category theory in software engineering
� The category of algebraic specifications - category theory can be used to represent

composition and refinement
� The category of temporal logic specifications - category theory can be used to build

modular specifications and decompose system properties across them
� Automata theory - category theory offers a new way of comparing automata
� Logic as a category - can represent a logical system as a category, and construct proofs

using universal constructs in category theory (“diagram chasing”).
� The category of logics - theorem provers in different logic systems can be hooked together

through ‘institution morphisms’
� Functional Programming - type theory, programming language semantics, etc

19

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Modularity in Software Engineering
• Reasons for wanting modularization

� Splitting the workload into workpieces
“decompose the process”

� Splitting the system into system pieces (components)
“decompose the implementation”

� Splitting the problem domain into separate concerns
“decompose the requirements”

• Resulting benefits
� Information hiding
� Compositional verification
� Compositional refinement

• Generalizable approaches:
� Semi-formal - Viewpoints framework
� Formal - Category Theory

Most of the category
theory work has

addressed this one

20

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Building blocks
• Need to express:

� Modules (Interface + Structure + Behavior)
� Module Interconnections
� Operations on modules (e.g. compose two modules to form a third)

structure

behavior in
te

rfa
ce structure

behaviorin
te

rfa
ce

interconnection

new
module

21

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Outline
(1) An introduction to categories

� Definitions
� Some simple examples

(2) Motivations
� Why is category theory so useful in mathematics?
� Why is category theory relevant to software engineering?

(3) Enough category theory to get by
� some important universal mapping properties
� constructiveness and completeness

(4) Applying category theory to specifications
� Specification morphisms
� Modular Specifications
� Tools based on category theory

you
are
here

22

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Enough Category Theory to get by...
• Universal Constructs

� General properties that apply to all objects in a category
� Each construct has a dual, formed by reversing the morphisms
� Examples:

– initial and terminal objects
– pushouts and pullbacks
– colimits and limits
– co-completeness and completeness

• Higher order constructs
� Can form a category of categories. The morphisms in this category are called functors.
� Can form a category of functors. The morphisms in this category are called natural

transformations.
� Can consider inverses of functors (and hence isomorphic categories). Usually, a weaker

notion than isomorphism is used, namely adjoint functors.

These are the building
blocks for manipulating

specification
structures

23

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Initial and Terminal Objects
• Initial objects

An object S is said to be initial if for every other
object X there is exactly one morphism
f:S→X

• Examples
� The number 0 in this category:

� The empty set {} in the category of sets

• Terminal objects
An object T is said to be terminal if for every

other object X there is exactly one
morphism f:X→T

• Example
� Any singleton set in the category of sets

Uniqueness (up to isomorphism):
� If T1 and T2 are both terminal objects, then there is exactly one

morphism between them, and it is an isomorphism
� Why? Because there is exactly one morphism each of f:T1→T2,

g:T2→T1, h:T1→T1, and j:T2→T2, where h and j are identities.
� Same applies to initial objects

T2T1IDT1
IDT2f

g

1

2
30

24

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Pushouts and Pullbacks
• Pushout

The pushout for two morphisms f:A→B and
g:A→C is an object D, and two morphisms
d1:B→D and d2:C→D, such that the square
commutes…

… and D is the initial object in the full
subcategory of all such candidates D’

(I.e. for all objects D’ with morphisms d1’ and
d2’, there is a unique morphism from D to
D’)

• Pullback
The pullback for two morphisms f:A→C and

g:B→C is an object D, and two morphisms
d1:D→A and d2:D→B, such that the square
commutes…

… and D is the terminal object in the full
subcategory of all such candidates D’

A

C

B

D

D’

f

g

d2

d1
d1’

d2’

d’

D

B

A

C

D’

d1

d2

g

f

d1’

d2’

d’

25

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Products and Coproducts
• Coproduct

The coproduct of a family of objects Ai is an
object P and a set of morphisms gi:Ai→P

… and P is the initial object in the full
subcategory of all such candidates P’

• Coproduct vs. Pushout
� Pushout is a universal property of any two

morphisms with a common domain
� Coproduct is a universal property of any set

of objects

• Product
The product of a family of objects Ai is an

object P and a set of morphisms gi:P→ Ai

… and P is the terminal object in the full
subcategory of all such candidates P’

• Product vs. Pullback
� Pullback is a universal property of any two

morphisms with a common codomain
� Product is a universal property of any set of

objects

P

A1

A2

p1

p2

P’ P

A1

A2

p1

p2

P’

26

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Example products
• In the category of sets:

� constructed as the cartesian product
• In the category of

geometric spaces:

• In the category of logical
propositions:

a

ba∧∧∧∧ b

a

ba∧∧∧∧ b

p'

In any given category,
some products might not
exist. It is useful to know

whether they all do.

27

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

e

a
s

C

k

e
s

b

B

Example co-product & pushout
• Coproducts on the category of

sets:
� Constructed by taking the disjoint sum

• Pushouts on the category of
sets:
� Union of::
� Pairs of elements from B and C that are the

images of the same element in A
� Plus all the remaining elements of B and C

y

x

A

(sB, sC)
(eB, eC)

kB

bB

aC

P

{a,b,c} {x,y}

{a,b,c,x,y}

28

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Limits and Colimits
• Colimits

� initial objects, pushouts and coproducts are
all special cases of colimits.

� Colimits are defined over any diagram

For any diagram containing objects Ai and
morphisms ai, the colimit of this diagram is
an object L and a family of morphisms li,
such that for each li: Ai→L, lj: Aj→L, and
ax:Ai→Aj, then lj � ax = li

… and L is the initial object in the full
subcategory of all such candidates L’

• Limits
� terminal objects, pullbacks and products are

all special cases of limits.
� Limits are defined over any diagram

For any diagram containing objects Ai and
morphisms ai, the limit of this diagram is an
object L and a family of morphisms li, such
that for each li:L→Ai, lj:L→Aj, and
ax:Ai→Aj, then ax � li = lj

… and L is the terminal object in the full
subcategory of all such candidates L’

L

Ai

Aj

li
lj

L’
axL

Ai

Aj

li
lj

L’
ax

29

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Completeness and Co-completeness
• It is useful to know for a given category which universal

constructs exist:
� If a category has a terminal object and all pullbacks exist, then all finite limits exist

– Hence it is finitely complete
� If a category has an initial object and all pushouts exist, then all finite colimits exist

– Hence it is finitely cocomplete

• Proofs are usually constructive
� I.e. give a method for computing all pullbacks (pushouts)
� The constructive proof is the basis for automated generation of limits (colimits)

• Obvious application
� If your objects are specifications, then:

– colimits are the integration of specifications
– limits are the overlaps between specifications

30

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Outline
(1) An introduction to categories

� Definitions
� Some simple examples

(2) Motivations
� Why is category theory so useful in mathematics?
� Why is category theory relevant to software engineering?

(3) Enough category theory to get by
� some important universal mapping properties
� constructiveness and completeness

(4) Applying category theory to specifications
� Specification morphisms
� Modular Specifications
� Tools based on category theory

you
are
here

31

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

(Recall...) Algebraic Specifications
• A signature is a pair <S, ΩΩΩΩ>

where S is a set of sorts, and Ω is a set of operations over those sorts

• A specification is a pair <ΣΣΣΣ, ΦΦΦΦ>
describes algebras over the signature Σ that satisfy the axioms Φ

• Semantically:
� We are modeling programs as algebras
� A specification defines a class of algebras (programs)

Spec Container
sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Spec Container
sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Signature

Body

32

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Specification morphisms
• Specfication morphisms

� Consider the category in which the objects are specifications
� The morphisms translate the vocabulary of one specification into the vocabulary of another,

preserving the theorems

• Actually, there are two parts:
� Signature morphism: a vocabulary mapping

– maps the sorts and operations from one spec to another
– must preserve the rank of each operation

� Specification morphism: a signature morphism for which each axiom of the first
specification maps to a theorem of the second specification

• Proof obligations
� There will be a bunch of proof obligations with each morphism, because of the need to

check the axioms have been translated into theorems
� A theorem prover comes in handy here.

33

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Example
Spec Container

sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Spec Container
sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Spec List
sort Elem, List
op null: List
op single: Elem -> List
op append: List, List -> List
op head: List -> Elem
op tail: List -> List
axiom head(single(e)) = e
axiom tail(single(e)) = null
axiom append(single(head(l)), tail(l)) = l

end-spec

Spec List
sort Elem, List
op null: List
op single: Elem -> List
op append: List, List -> List
op head: List -> Elem
op tail: List -> List
axiom head(single(e)) = e
axiom tail(single(e)) = null
axiom append(single(head(l)), tail(l)) = l

end-spec

These comprise the
signature morphism

(Note each spec has it’s
own namespace)

These axioms must
be true down here
(after translation)

34

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

What do we gain?
• Three simple horizontal composition primitives:

� Translate: an isomorphic copy (just a renaming)
– can test whether two specifications are equivalent

� Import: include one specification in another (with renaming)
– for extending specifications with additional services

� Union (colimit): Compose two specifications to make a larger one
– system integration

• One simple vertical composition primitive:
� refinement: mapping between a specification and its implementation

– introduce detail, make design choices, add constraints, etc.
– (may want to use different languages, e.g. refinement is a program)

35

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Example colimit (pushout)

Spec Container
sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Spec Container
sort Elem, Cont
op empty: Cont
op single: Elem -> Cont
op merge: Cont, Cont -> Cont
axiom merge(empty, e) = e
axiom merge(e, empty) = e

end-spec

Spec List
sort Elem, List
op null: List
op head: List -> Elem
op tail: List -> List
op cons: Elem, List -> List
axiom head(cons(e, l)) = e
axiom tail(cons(e, l)) = l
axiom cons(head(l), tail(l)) = l
axiom tail(cons(e, null)) = null

end-spec

Spec List
sort Elem, List
op null: List
op head: List -> Elem
op tail: List -> List
op cons: Elem, List -> List
axiom head(cons(e, l)) = e
axiom tail(cons(e, l)) = l
axiom cons(head(l), tail(l)) = l
axiom tail(cons(e, null)) = null

end-spec

New spec is lists
with two new operations,

“single” and “merge”

New spec is lists
with two new operations,

“single” and “merge”

Spec Container
sort A, B
op x: B

end-spec

Spec Container
sort A, B
op x: B

end-spec

36

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

(Recall…) Temporal Logic Specs
• A signature is a pair <S, ΩΩΩΩ>

where S is a set of sorts, and Ω is a set of operations over those sorts

• A specification is a 4-tuple <ΣΣΣΣ, ATT, EV, AX>
Σ is the signature
ATT is a set of attributes
EV is a set of events
AX is a set of axioms expressed in temporal logic

• Semantically:
� We are modeling programs as state machines
� A specification describes a class of state machines that obey the axioms

• (A minor complication)
� Need to worry about locality of events

These three comprise the
vocabulary of the specification

Assume some usual temporal
logic operators, e.g.

always
eventually

37

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Expressing modules

parameters export

import body

Resources provided
by this module

Parameters of
this module
(identifies
IN-OUT
parameters)

Resources to
be provided to
this module by
others

Realization of the
resources declared
in the export part
(may contain
hidden sorts and
operations)

• Want to generalize the notion of a module
� Explicitly declare interfaces, with constraints on imported and exported resources
� Hence the interface itself is a specification (actually 2 specifications)
(Ehrig & Mahr use algebraic specs; Michel & Wiels use temporal logic specs)

38

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

• The approach works for many different kinds of module:

Examples

datalists;
equality;
total order;

lists;
list opns;

datalist
sorting
function;

implement’n
of sorting
function

data;
equality;
ordering;

same

lists
list opns;

implement’n
of list
operations

data

list(data)

SORTED:
list->bool

same

common
events

input
events

output
events

state
machine

E.g. function modules E.g. data types

E.g. predicates E.g. state machines

39

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Composing modules

par1 exp1

imp1 bod1

par2 exp2

imp2 bod2

par

bod

E.g. import (“uses”): E.g. union (colimit):
par0 exp0

bod0imp0

par1 exp1

bod1imp1

par2 exp2

bod2imp2

new module

40

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Advanced Topics
• Logic engineering

� Language translation
– from one logic to another
– from one specification language to another

� Aim is to characterize logics as:
– signatures (alphabet of non-logical symbols)
– consequence relations

� Then an institution morphism allows you to translate from one logic to another whilst
preserving consequence

• Natural Transformations of refinements
� If a system specification is a category, and the relationship between the specification and

its refinement is a functor…
� …then the relationship between alternative refinements of the same specification is a

natural transformation.

41

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Future Research Issues
• Compositional Verification in Practice

� E.g. How much does the choice of modularization affect it
� Which kinds of verification properties can be decomposed, and which cannot?
� How do we deal systemic properties (e.g. fairness)

• Evolving Specifications
� How do you represent and reason about (non-correctness preserving) change?
� How resilient is a modular specification to different kinds of change request

• Dealing with inconsistencies
� Specification morphisms only work if the specifications are consistent
� Can we weaken the “correct by construction” approach?

(suggested)

42

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Summary
• Category Theory basis

� Simple definition: class of objects + class of arrows (morphisms)
� A category must obey identity, composition and associativity rules

• Category theory is useful in mathematics…
� Unifying language for talking about many different mathematical structures
� Provides precise definition for many abstract concepts (e.g. isomorphism)
� Framework for comparing mathematical structures

• Category theory is useful in software engineering
� Modeling and reasoning about structure
� Provides precise notions of modularity and composition
� Specification morphisms relate vocabulary and properties of specifications
� Constructive approach lends itself to automation

43

University of Toronto Department of Computer Science

© Steve Easterbrook, 1999

Answer to challenge question:

YES!
(proof left as an exercise for the audience*)

Aluffi uses category theory to unify the treatment of groups, rings, modules, linear algebra, and then goes on to more abstract category
theory. I have also written a bit on this [2], regrettably choosing ML as the language of implementation. [1]:
http://www.amazon.com/Algebra-Chapter-Graduate-Studies-Mathe...Â As for people who don't agree that this is for beginners, I don't
think you will be able to feel like you get it until you sit down with the work and stare at it a lot until it makes sense to you. It sounds
stupid and silly, but that's the only way I can really communicate how to learn this stuff with a feeling of adequate understanding. â€¢
Category theory is ideal for: Reasoning about structure, and mappings that preserve structure Abstracting away from details. Automation
(constructive methods exists for many useful categorical structures). â€¢ Applications of Category theory in software engineering. The
category of algebraic specifications - category theory can be used to represent composition and refinement The category of temporal
logic specifications - category theory can be used to build modular specifications and decompose system properties across them
Automata theory - category theory offers a new way of comparing automa This course is for beginners to graphic design theory and for
anyone who wants to learn the basic principles of color theory, typography, layout design, photography, logo design, branding, and more
as it relates to graphic design. You will learn intermediate and advanced terminology that you can use to incorporate in graphic design,
user interfaces, mobile app design, logo design, t-shirt design, and other digital or print mediums.Â Enroll now in this course and get
started! Who this course is for: This course is specifically design for beginners interested in graphic design theory. Philosophies and
practical projects are given so that you not only understand the reasoning behind the theory, but you also get a chance to practice it to.
This course is great for

