Visual Basic for Applications - Programming
Excel

Michael Schacht Hansen

October 6, 2002

Contents

1 Introduction 3
1.1 Purpose 3
1.2 Who should participate 0L 3
1.3 Materialsused 3
1.4 Conventionsused 3
1.5 What one fool can do anothercan 4

2 Getting started 4
2.1 What you need to follow the examples in this document 4
2.2 The macro recorder - the first macro 5

2.2.1 What is the macro recorder 5
2.2.2 Recording the first macro 5
2.2.3 Recording with absolute and relative references 5
2.2.4 What can berecorded, 6
2.3 Assigning macros to shortcut keys or buttons 6
2.3.1 Assign a macro to a shortcut key 6
2.3.2 Assigning macros to menu buttons 6
2.3.3 Assign macro to a button on a sheet 6
2.4 The Visual Basic Editor 7
2.4.1 Activating VBE and a brief overview 7
2.4.2 Taking a first look at thecode 7
24.3 Afewhintsfor VBE 0oL 8
2.5 Does the macro recorder create smooth, efficient code? 9

3 The Object Model 10
3.1 Theanalogy 11
3.2 Excelobjects 12
3.3 Obtaining information about objects and properties 13

3.3.1 VBA documentation 14
3.3.2 The macro recorder 14
3.3.3 The object browser oL 14
4 Basic programming concepts 14
4.1 Understanding variables and constants 15
4.1.1 Definitions 15
4.1.2 Data types, declarations and scope 15
4.1.3 Object variables 18
4.1.4 Built-in constants L 18
4.2 Functions and subroutines L. 19
4.2.1 Definitions oo 19
4.2.2 Declarations. L 19
4.2.3 Using Worksheet functions 20
4.3 Controlling program flow 20
4.3.1 GoTostatement 20
4.3.2 If-Then-Else statements 21
4.3.3 Select Case structure 22
434 For-Nextloop, 23
4.3.5 Do-While and Do-Until loop 23

4.3.6 Error handling

5 Working with Ranges
5.1 Referencing rangeso oL
5.2 Properties of Range objects L.
5.2.1 Value property
5.2.2 Count property Lo
5.2.3 Font and Interior property
5.2.4 Entering formulasincells
5.2.5 Select method oL
52.6 CopyandPaste.
5.2.7 NumberFormat property
5.3 Range methods
5.3.1 Clear and Delete methods

6 Chart objects - programming charts
6.1 Introduction
6.2 Creating a chart object 0.
6.3 Formatting thechart 0.

7 Examples - Using VBA
7.1 Statistics Creating Bland-Altman plots

25
25
26
26
27
27
27
27
28
28
28
28

29
29
29
29

32

1 Introduction

1.1 Purpose
The purpose of this course is to:
e Demonstrate the use of so-called office programs in research.
e Make the participants comfortable with the use of office programs.
e Introduce tools for automating tedious tasks in research.
e Make the participants comfortable with macro programming using VBA.

In short to help the participants overcome some of the boring, tedious tasks and
free up time for research.

1.2 Who should participate

Basically anybody who wants to improve their skills with spreadsheets, word
processors etc. The course will focus on handling of large amounts of data in
an efficient way. It is assumed that the participants have some experience (but
not expert level) with spreadsheets and word processors (e.g. MS Word and MS
Excel).

1.3 Materials used

The examples in this course were made for Microsoft Office programs. The
teachers of this course are not financed by Microsoft in anyway, but realizing that
MS Office is the most widely used office suite, the choice seemed obvious. The
code (programming) illustrated in this (and other) documents is thus written for
MS Office programs in MS Visual Basic for Applications (VBA). Participants
working with other systems in their research setting can still profit from the
course. We will focus on the general principles, and these should be portable
(after reading the documentation on the other system). It has been decided to
recommend a book for the course (Excel 2002 Power Programming with VBA
by John Walkenbach). It is not absolutely necessaryto purchase and read this
book; reading this document and other course notes should suffice, but the
books gives a more systematic introduction to the main subject of the course
- VBA programming. Materials, examples and presentations used in the course
are available from www.intermed.dk/VBA

1.4 Conventions used

To make notes and examples more readable we have adapted the following
conventions: All code examples are written with a mono space font (that is the
way it looks in the editor). Not all the code examples can work on their own. It
may just be a few lines to illustrate a principle. Usually commands should be
written on one line, but the width of a normal page would not allow this and
sometimes line breaks are needed in the code examples. Line breaks are allowed
when actually writing the code if you leave a trailing ” " (space followed by
underscore) of the end of the broken line. The same syntax for line breaks are
used in the documents. An example:

Sub MyMacro()
’Macro example

ActiveSheet.Pictures.Insert (_
"C:\temp\Olvalve. jpg")
End Sub

Keyboard shortcuts are written in bold face e.g. pressing ALT+F11 activates
the visual basic editor. Menu access is written with arrows indicating the path
of the mouse (or sequence of shortcut keys); to save a file click File—Save.

1.5 What one fool can do another can

Participants who have prior programming experience may find some of the mate-
rial in the course boring. Since no programming skills are required to participate,
and since programming is an important part of the course, some basic program-
ming skills must be taught. Please note however that programming languages
vary in syntax and suitable programming style, and it might be worth the effort
to listen in after all.

If you have no programming experience, do not despair. Even if your basic
computer skills are somewhat lacking you should have a very good chance of
changing all that. Programming (even macro programming) has been considered
a subject for geeks and nerds, and lots of people have solved their problems by
spending hours repeating tasks that they could have programmed their way
out of, simply because they thought programming was too difficult. The most
important thing when you start programming is to be motivated. To be fully
motivated you should have the three great virtues of a programmer:

1. Laziness
2. Impatience
3. Hybris

This should not be misunderstood. You should be too lazy to repeat a task when
you can have a computer do it for you, you should be interested in setting up a
system that lets you analyze results as soon as you are finished measuring (or
what ever you do), and most importantly, you should not be afraid to try the
impossible.

With the motivation in place you will be amazed how easy it is. You might
actually have some fun, and finally feel that you have tamed the beast occupying
your desk. Considering how many fools can program, it is surprising that it
should be thought either a difficult or a tedious task for any fool to master the
same tricks.

2 Getting started
2.1 What you need to follow the examples in this docu-
ment

All examples in this document were programmed in Microsoft Visual Basic for
Applications (VBA) to work in Microsoft Office XP (Excel). It is highly unlikely

that they will work without modifications in other office suites, but most of them
can be made to work with StarBasic (not for beginners) in the StarOffice suite
and earlier versions of Microsoft Office should do fine too. So to follow the
examples office you should have Microsoft Office (preferably XP) installed on
your system, and you also need the Macro Programming environment Visual
Basic (installed by default), and the Visual Basic Editor (VBE) installed. If you
have a standard installation of MS Office you should be good to go.

2.2 The macro recorder - the first macro
2.2.1 What is the macro recorder

Unlike other programming environments VBA has a built in recorder that has
the ability to record your actions in your spreadsheet or word processor and
translate them into VBA. This means that you can actually start programming
without knowing a single command or keyword in the programming language.
However, as we will see you cannot do everything with the macro recorder. Your
actions are limited to the things you are already able to do in excel. This is not
enough in the long run, but it will get you started, and it can be a very powerful
learning tool.

2.2.2 Recording the first macro

Recording your actions is real simple in MS Office. Try opening excel, and a new
workbook. Activate the macro recorder by choosing Tools—Macro—Record new
macro. ..! Choose a name for the new macro in the dialog (Macrol is probably
not a suitable name), and press OK. The dialog disapears and a small control
panel appears. The control panel has two buttons. Stop (to stop the macro
recorder) and a buttons to toggle between absolute and relative references. For-
get about that other button for now. We will get back to in in just a few sec-
onds. Try typing something into a few cells and stop the recorder. You have now
recorded a new macro. To test if it works, try deleting what you have entered in
the cells and run the macro. This is done by choosing Tools—Macro—Macros. . .
or pressing ALT+F8. Mark the recorded macro from the list and click run (later
on we will see how macros can be assigned to shortcut keys or buttons on the
tool bar). If everything is in order the macro will enter what you told it to in the
sheet. You might notice that the macro enters the text or numbers in the exact
same cells as you did regardless of where you place the cursor prior to running
the macro. This is because we recorded the macro with absolute references. The
next section illustrates the difference between absolute and relative references.

2.2.3 Recording with absolute and relative references

The absolute and relative reference settings are much easier illustrated than
they are explained. Try clearing the sheet from the above example, activate the
cell where you want to start filling in information, start the macro recorder and
press the relative references button. Now fill in some information in the cells and

1Depending on your security settings the Record new macro option might be faded out,
and you will not be able to activate it. To correct this choose Tools—Macro—Security. . ., and
set the security level to medium or low. You should restart Excel if the Record new macro
option is not available after this.

turn the macro recorder off. If you try to run the macro now, you will notice
that it inserts whatever information you have told it to, but it does it in the
same position as before relative to your current starting point. That is why it
is called relative references. We could write pages about how this works, but
when you play around with it you will notice the difference. When we get more
comfortable with VBA we will be able to explain the different behavior from
the recorded code, and we will appreciate the different macro strategies.

2.2.4 What can be recorded

The macro recorder can record basically any task you can do yourself in Excel.
However VBA has lots of other abilities that you cannot do yourself in Excel,
some of them being automating tasks (looping), creating dialog boxes and cus-
tom menus. It should also be mentioned that the macro recorder does not create
the most efficient code in the world (see the following). The macro recorder can
be a great learning tool, but to take full advantage of VBA, you should be able
to understand the actual VBA code.

2.3 Assigning macros to shortcut keys or buttons

Macros can easily be assigned to a shortcut key or a button on a menu bar or
in the sheet. This can be an advantage if you use the macro often or if you want
to create a user friendly interface for a macro you have created.

2.3.1 Assign a macro to a shortcut key

Open the macro dialog box (Tools—Macro—Macros... or press ALT+F8).
Mark the macro you are interested in and click Options. .. A dialog box opens
and you can enter a shortcut. Ctrl+ is already filled in and you can enter letter
in the little box. If you enter an uppercase letter, for instance L, the shortcut
would be CTRL+4+SHIFT+L and if you enter a lowercase letter, for instance
1, the shortcut would be CTRL+L. Remember that you can override built in
keyboard shortcuts this way. If you are overriding shortcuts you dont know exist
it doesnt really matter!

2.3.2 Assigning macros to menu buttons

Right-click the menu bar an choose customize. Make sure that the menu bar you
want to add the macro to is present. Click the Commands tab in the dialog box.
Find Macros in the Categories section. Drag the custom button to the menu
bar. Click modify selection in the dialog box. Choose assign macro, and assign
the macro. Click Modify selection again and choose Edit button image to edit
the image in the button. You now have a macro button on your menu bar.

2.3.3 Assign macro to a button on a sheet

Make the Forms menu bar visible by right-clicking the menu bar and choosing
Forms. Click the button icon in the menu bar and draw a button on your sheet.
A dialog box will automatically ask you what macro you want to assign to the
button. Edit the text on the button afterward, and close the forms menu bar.
Thats it!

2.4 The Visual Basic Editor

Until now you have been creating macros, and you havent written a single line
of code yet. This does not mean that the code has not been written. You have
just had the macro recorder do the work for you. This is also a fine solution for
some problems, but in the long run you need to be able to modify the code made
by the recorder and create your own. The MS Office Suite comes with a built
in programming environment, The Visual Basic Editor (VBE). In this section
we will just browse through some of the main features of VBE. We will not be
able to cover all of them, but we will return to them when it seems appropriate
(We will not cover the object browser in this section, but save it for the section
on object structure).

2.4.1 Activating VBE and a brief overview

The easiest way to enter VBE is with the shortcut key ALT+F11. You can also
enter it from the Tools menu, but why should you? It is hard to anticipate what
you might meet when you enter VBE, since it is highly customizable, but most
likely there is a large area on the right for script windows (thats where the code
goes), and on the left side you probably have a window called Project Browser.
You might also have a window called Properties, and there might even be a few
others. For now we will focus on the Project browser and the code windows.
The Project browser gives you a brief overview of the workbooks that are open
at the moment and what code they contain. It is actually very simple, and it
works much like the normal Windows Explorer, where you browse through your
files. Here you browse through different workbooks, sheets and something called
modules. All of these can contain code, and most of it you can edit as you see fit.
If you minimize all the project in the Project Browser you might be able to locate
the workbook you are currently working on. The next thing you will notice is
that there are probably other workbooks open at the same time; workbooks that
have been opened automatically. Some programs (Reference Manager, Adobe
PDF writer etc.) install themselves as macro modules in MS Office, and you
might be able to see some of them. Furthermore the Office programs open some
on their own. Try expanding the workbook you are working on at the moment.
You will be able to see two folders. One contains Excel Object (this means the
workbook and the sheets it contains), and the other one contains modules. The
Modules are the default place to insert code for the macro recorder, and the
macros you have recorded are placed in the modules in this folder. You can
place code on the sheets and in the workbook, but for now we will concentrate
on the code in the modules.

2.4.2 Taking a first look at the code

Try double-clicking one of the modules in the module folder (there might only
be one). A code window should open on the right side of the screen, and you can
see the code that you have recorded. The first macro with absolute references
should look something like this:

Sub Macrol()

J

’ Macrol Macro

> Macro recorded 19/04/2000 by Michael Schacht Hansen

J

J

Range ("D8") .Select

ActiveCell.FormulaR1Cl1 = "Freedom"
Range ("E8") .Select
ActiveCell.FormulaR1C1 = "to"

Range ("F8") .Select
ActiveCell.FormulaR1C1 = "choose"
Range ("F9") .Select

End Sub

Depending on where you entered your data and what you entered your macro
will look a little bit different, but they should look more or less the same. The
first few lines starting with 7’” are comments and are not interpreted when the
macro is executed, but the remaining lines are. It may seem a bit confusing for
you at first, but you will understand the code completely before long. The macro
starts with the Sub statement followed by the name of the macro. This means a
new macro starts here and it continues on to the End Sub statement. For now
just accept the way things look. If you examine the other macro recorded with
relative references you will find something like this:

Sub Macro2()

)

> Macro2 Macro

> Macro recorded 19/04/2000 by Michael Schacht Hansen

J

J

ActiveCell.Select
ActiveCell.FormulaR1C1 = "Freedom"
ActiveCell.0ffset (0, 1).Range("A1").Select
ActiveCell.FormulaR1C1 = "to"
ActiveCell.Offset (0, 1).Range("Al1l").Select
ActiveCell.FormulaR1Cl = "choose"
ActiveCell.Offset (0, 1).Range("A1").Select
End Sub

This also might not make sense to you, but for now just notice that the second
version makes frequent use of the keyword 0ffset which should tell you that
this version works in relative coordinates from the starting point, while the first
version have absolute cell references hard-coded into the macro. Hence it works
with absolute references.

You should try changing the code for the macro and observe the outcome.
Start by changing the text you recognize as the text or formulas you entered
when recording the macro. Then continue to change some of the cell references
and see what happens.

2.4.3 A few hints for VBE

Below I have listed (in a more or less random order) a few features that I use
often in VBE:

e A macro can easily be executed from VBE, when you have made changes
and want to observe the effect. This is done by placing the cursor some-

where within the code of the macro you want to execute and pressing
F5.

e Help on a specific command or keyword in VBA can be found by placing
the pointer over the keyword an pressing F1.

e The Object Browser (we will get to that in the next section) can be acti-
vated by pressing F2.

e Cut, copy, paste, and general text navigation works as in normal word
processors.

2.5 Does the macro recorder create smooth, efficient code?

It has previously been mentioned that the macro recorder might not be the best
programmer in the world. The point of the following example is to illustrate
this. You might not be able to appreciate it now, and if the following makes
no sense to you just skip it and return to it later when you programming skills
have been improved.

The macro recorder records basically everything you do. This means if you
open a dialog box, change one setting, and press ok. It will record all the settings
in the dialog box. If it is a large dialog this becomes very inefficient. To illustrate
this try recording a macro, where you change some page setup settings or similar.
This is what gets recorded when you change the page orientation from portrait
to landscape:

Sub Macro3()

J

’ Macro3 Macro

> Macro recorded 06-10-2002 by Michael Schacht Hansen

With ActiveSheet.PageSetup
.PrintTitleRows = ""
.PrintTitleColumns = ""
End With
ActiveSheet.PageSetup.PrintArea = ""
With ActiveSheet.PageSetup
.LeftHeader = ""
.CenterHeader = ""
.RightHeader = ""
.LeftFooter = ""
.CenterFooter = ""
.RightFooter = ""
.LeftMargin = Application.InchesToPoints(0.75)
.RightMargin = Application.InchesToPoints(0.75)
.TopMargin = Application.InchesToPoints(1)
.BottomMargin = Application.InchesToPoints(1)

.HeaderMargin = Application.InchesToPoints(0.5)
.FooterMargin = Application.InchesToPoints(0.5)
.PrintHeadings = False

.PrintGridlines = False

.PrintComments = x1PrintNoComments
.PrintQuality = 600

.CenterHorizontally = False

.CenterVertically = False

.Orientation = xlLandscape

.Draft = False

.PaperSize = x1PaperLetter

.FirstPageNumber = xlAutomatic

.Order = x1DownThenOver

.BlackAndWhite = False

.Zoom = 100
.PrintErrors = x1PrintErrorsDisplayed
End With

End Sub
You would have obtained the same effect with the following macro:

Sub ChangeOrientation()
ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

Obviously the macro recorder is not very efficient in this case, but on the other
hand we learned how to change the page orientation by recording the macro,
and we were then able to create the compact macro. This is a good illustration
of the strength and weakness of the recorder. It is an excellent learning tool,
but with a little training you are a much better programmer! Aside from this
obvious disadvantage of having the recorder do all the code for you, there is
another. There are a lot of features that you simply cannot record. For instance
try this macro:

Sub DisplayBox ()
MsgBox("This is a message to the user")
End Sub

When executed in Excel this should result in a dialog box, with a message to
the user. You have no way of recording actions like that. There are lots of other
(more important) examples, like creating loops that repeat the same action over
and over (do the work for you while you drink coffee). The following chapters
will be a short tour of the basic principles needed to write your own macros
without use of the recorder, but remember to use the macro recorder when you
want to find the command syntax for a specific action in Excel.

3 The Object Model

All macro programming in VBA is based on an object model, and is thus called
object orientated programming (OOP). This concept is not unique to VBA, but
is a widely adopted programming strategy thats used in almost all the programs

10

released today. The reason why VBA is object orientated is probably because
MS Office programs were programmed object orientated, and when creating a
programming language for manipulating these programs it seemed obvious to
apply an object orientated strategy. If you are already comfortable with OOP
and referencing in object structures, you should skip this section, but if you are
not quite sure what OOP is, please read on.

3.1 The analogy

All authors of books on object orientated programming have come up with
their own analogy to describe OOP. It is one of those subjects that get more
and more complicated the more you try to explain, and experience shows, that a
description through an analogy does a better job, than a technical explanation
of OOP (it might also be that the authors are not quite sure what they are
dealing with).

First of all we need a useful definition of and object. Usually objects are
considered to be things that you can touch and look at. Here we will define an
object as a part of a virtual environment (somewhere in the computers memory)
with certain properties and functions (also known as methods). This definition
might not seem quite clear, but read on and hopefully things will clear up.

In our analogy we imagine that we have an exact model of the earth in a
computers memory (every single atom is accounted for). We could also just have
made our analogy on the earth as it is, but to emphasize that objects are not
actual objects, but virtual objects, we will use the model of earth. In this model
the mother object (the main object, containing all other objects) is called Earth.
This Earth object has certain properties (for instance the location of Earth in
space) and it has functions (for instance making a storm in southern Europe).
The mother object contains other objects. Some of these objects are single
objects, like The Pope, others are collections of similar objects like countries
(Denmark would be a member of this collection). Each of the objects contained
in Earth have properties and methods, and they can also contain objects. The
country Denmark would contain another collection of objects called Cars. In
such an object model you need a special syntax to identify (or reference) different
objects. How do you for instance reference a car in Sweden or a car in Denmark.
In OOP, the most widely adapted syntax is known as ”Dot-notation-syntax”.
VBA also uses this syntax, and it is actually quite useful. To make an exact
reference to the color of a specific car in the country Denmark on the planet
Earth we would write:

Earth.Countries("Denmark") .Cars("XP 38 999").Color

If you were to interpret this statement it would translate into something like:
”the color of the car named XP 38 999 in the country called Denmark on
the planet Earth”. And here we have actually suggested that Earth might not
even be the mother object (it might be part of the collection of Planets in the
Universe. .. part of the collection Universes...). Anyway it seems obvious that
the syntax illustrated above is much more useful than actually spelling out what
you want.

Now the purpose of programming was to manipulate the model. We now
have a model of Earth in a computer memory, and we want to observe what

11

happens if we change the color of a specific car to red. The code would look
something like:

Earth.Countries("Denmark") .Cars("XP 38 999").Color = Red

If we wanted to make the car move, the code might look like the following. We
are not accessing a property of the object we are asking it so execute a function
(use a method) to manipulate the object. We are also supplying coordinates (for
the movement):

Earth.Countries("Denmark") .Cars("XP 38 999") .Move(209,99)

This could be a movement of 209 units to the right and 99 units down. This
is actually pretty simple once you get used to it. Programming Excel is just
like manipulating our model of Earth. Excel was build on an object model, and
accessing different part of the program should be pretty easy. VBA is actually
just a tool to access and manipulate the different objects of Excel.

3.2 Excel objects

The hardest part of learning VBA is to learn what the objects are called and
how they act in the model. Once you get the basic idea of how things work in
one program (or part of a program) it is easy to apply the same strategies in
another program, if you can find a way to learn what the objects, properties
and methods are called.

The mother object in Excel is called Application. This a a direct reference to
the Excel program itself. An Excel program can contain several open Workbooks
(these are the *.xls files). Each of these Workbooks contain a number of sheets,
and these contain cells and so on (you are probably beginning to get the idea
by now). It would be impossible to list all the objects with their methods and
properties here, but read the following sections to get an idea of where you can
get that information. The are more than 100 major objects in Excel with the
objects they contain, but fortunately you will probably only need to know a few
of them.

So from the analogy above we get that referencing a specific sheet in Excel
would look something like this:

Application.Workbooks ("Name_of_wrkbk.x1ls") .Sheets(1)

Notice that the reference to the sheet, we are interested in, is made with an
index number. We are referencing sheet number 1 in this case. We could also
have used the name of that sheet, but we might not know the name of the sheet.
We would change the name of the sheet by writing:

Application.Workbooks ("Name_of_wrkbk.x1ls") .Sheets (1) .Name _
= "My sheet"

We could also call a method of the sheet. To activate the sheet (make it the
sheet that the user would enter data into) we would write:

Application.Workbooks ("Name_of _wrkbk.xls"). _
Sheets (1) .Activate

12

Often we are interested in referencing specific cells in a sheet. We have already
seen how cells are referenced in the examples recorded with the macro recorder.
To change the value of a specific cells we would write:

Application.Workbooks("Bookl") .Sheets(1).
Range("A1") .Value = 68

The above statements is equivalent to instruction somebody to: Set the value of
cell A1 on Sheet 1 in Workbook Bookl to 68. The dot notation syntax makes
it a little more clear, what you actually mean.

Referencing an object or property of an object with a reference starting with
Application. is often referred to as the fully qualified reference. This means that
regardless of the context you state the reference in, it will always mean the
same. Excel can also deal with implicit references. This may or may not sound
complicated, but it is actually quite simple. If you do not state the fully qualified
reference, VBA fills in the missing part of the reference based on the context.
For instance:

Sheets(1) .Range("A1") .Value = 68
means the range Al in Sheet 1 of the active workbook, and
Range("A1") .Value = 68

means the range Al in the active sheet of the active workbook. And just to set
it straight.

Application.Workbooks("Bookl") .Sheets(1).Activate
Range ("A1") .Value = 68

is equivalent to the statement

Application.Workbooks ("Book1") .Sheets(1).
Range("A1") .Value = 68

It may all seem a bit strange to you at the moment. But after working through
a few examples it will all seem more clear.

3.3 Obtaining information about objects and properties

After having understood the basic principle of the object model, all you have
to do is obtain some information about the names of all the objects and what
properties and methods they have. There are in principle three different ways
of obtaining this information. I recommend you use all of them.

1. Read the documentation.
2. Use the macro recorder.

3. Use the object browser in VBE.

13

3.3.1 VBA documentation

There is plenty of sources for information on the VBA object model. Just try
typing ”Microsoft Excel Objects” in the search facility of the VBE help files.
One of the listed results should be a graphical tutorial of the objects.

When ever you have typed a VBA keyword in a module, you can place
the cursor in the keyword and press F1. This should bring you to help on that
keyword. Try the word ” Application”. The help screen should give you an option
to list all the methods and properties of the object.

3.3.2 The macro recorder

The macro recorder is an excellent way of getting information about objects. If
you want to manipulate the properties of a specific object, but you dont know
the exact name of the object or the property you want to manipulate, you can
record the action, and look at the code created by the recorder. Remember that
the recorder is not the best programmer in the world, and you might need to
change the code a little (or a lot). The recorder is a great learning tool, when
you want to learn the names of specific objects and properties, there are however
objects, than cannot be touched by the recorder, so you might still need to check
the documentation.

3.3.3 The object browser

VBE has a built-in tool for locating objects and properties - The Object Browser.
It is activated by pressing F2 in the VBE. This object browser is built much
like your file browser in windows or the project browser mentioned earlier. You
may not find much use for the object browser at first, but when you get more
comfortable with VBA you find that it can be a useful tool.

The object browser basically allows you to find information in two ways. By
searching or by stepping through a hierarchy. Try searching for a few words like
Range or Application or try to locate the word application in the hierarchy at
the bottom of the window. Its much harder to explain how the object browser
works than it is to actually use it, so just try it out.

4 Basic programming concepts

All programming languages have common features and concepts that must be
understood to master programing. These common features might be a little
different in the way they are put to use, but the basic concepts are still the
same. This section deals with these basic programming features. Most of the
information in this section could have been written for another programming
language, but the examples are for VBA, and some of the details may be different
in another programming language.

The information in this section is important. If you do not understand it,
you should read it again or find other sources to obtain the same information.

14

4.1 Understanding variables and constants
4.1.1 Definitions

Variables (constants are variables that dont change) are an essential to any
programming language. Many people have an idea of what a variable might be,
and several thousand different definitions have been made to try and make it
clear what a variable is. My definition would be: A variable is an identifier (a
name) for a storage location (part of the computers memory) which holds a
value of some sort. This may sound complicated, but it isnt really. It just means
that you can use the name of the variable to reference a value in the computers
memory, and you can use the same name to change the value of the variable.
Constants are just variables that cannot be changed.

You may choose almost any name for your variables. The rules may differ a
little from programming language to programming language, in VBA you must
follow these rules:

e The name can consist of letters and numbers, but it must start with a
letter.

e You cannot use space or periods in the name.

e VBA variable names are not case sensitive ("MyVar” is the same as ”my-
var”’).

e In general do not include any non-letter or non-number characters.
e The name cannot be longer than 256 characters.

e You cannot use words already taken up by VBA. For instance ” Applica-
tion”.

The following shows very basic use of variables:

MyVar = 2

MyVar3 = 101

Result = MyVar + MyVar3

TheText = "Variables can contain text"

The variable Results ends with the value 103, and TheText contains the text
within the quotation marks. The variables are really not very useful here, but
they will be.

4.1.2 Data types, declarations and scope

We have already seen that a variable is a name that contains a reference to a
value. In the above example we also saw that this value does not have to be a
number, it could also be some text. This means that the variables have different
data types. Some programming languages require that you declare in advance
what type of data a certain variable will contain. This is an optional feature in
VBA, but I would recommend that you always declare the data types of your
variables. This should be done for a number of reasons:

e It is good programming style to declare variables.

15

It makes the code easier to read for others.

If you always declare variables, VBA will tell you if you have misspelled
a variable. These are the kind of errors it takes hours to find.

e Your macro will take up less memory.

You code will run faster. You might not think of this as a problem, but
you will be amazed how fast MS Office can run itself into the ground.

e VBA will check if you are putting the right type of data into the variable

VBA has a variety of built in data types. We will just mention a few of the
most widely used here. Look in the help files for a complete list of data types.
Below is a table of the most common data types. Dont worry if it seems a little
confusing.

Data Type Bytes Used Value

Bolean 2 True or False

Integer 2 -32768 to 32767

Long 4 -2147483648 to 2147483647

Single (positive) 4 1.401298E-45 to 3.402823E38

Single (negative) 4 -3.402823E38 to -1.401298E-45

Double (positive) 8 4.94065645841247E-324 to
1.79769313486232E308

Double (negative) 8 -1.79769313486231E308 to
-4.94065645841247E-324

String 1 per char Example string

Object 4 Any defined object

Variant Varies Varies

If you introduce a variable name in your code without any prior declaration of
the variable, VBA will automatically assume that this variable is of type Variant.
This means that it can contain any type of data and VBA will automatically
change the type of the variable when needed. This may sound like a really
good idea. You would not have to worry about data types and VBA would
do the work for you. In reality it is a very bad idea. I have already named a
number of reasons why, but just imagine this. In the beginning of your code,
you do some calculations, and the results end up in a variable. You want to
use this result in a later calculation, but at this later point, you make a typing
error and the name of the variable is misspelled. VBA would think you are
introducing a new variable. Such a new variable would not contain any useful
value and your macro would fail. Errors like that are very hard to find, and
for that reason alone you should always declare your variables. If it is not clear
to you why you should declare your variables, you can either just accept it or
go back and read the above section again. The declaration of variables is done
with the Dim statement. Dim is short for Dimension, dimensioning is another
word for declaring. The following shows examples of variable declaration. The
declarations must be made before the code where the variable is used.

Dim MyNumber As Integer
Dim theFloat As Double
Dim theName As String

16

Once the variable has been declared it can be used in the code, and VBA will
give you an error message if you try to put the wrong type of data into your
variable. Constants are declared with a Const statement:

Const InterestRate As Single = 0.1453
Const Temperature As Integer = 25

You may wonder what constants are good for when you cant change their values.
You might as well hard code the values into the macro. But consider this. You are
building a macro to do some analysis on some measurements. In the calculations
you might use certain constants like temperature. If this value is used many
times it is not a good idea to hard code the value. If you want to use the macro
for another experiment with another temperature, you would have to change
the value in a lot of places and you might forget some of them. Using constants
also make your code more readable.

If you dont tell VBA otherwise, it will allow you to implicitly declare vari-
ables in your code. This means a new variable name in the code will automati-
cally get the type Variant if it has not been declared. As mentioned this is a bad
idea, so to force yourself to declare variables you should include the statement

Option Explicit

in the beginning of all modules (before declaring any Sub statements). You
can also have VBE do this automatically by entering Tools—Options. .. and
checking the box Require variable declaration. This only effects new modules. 1
can highly recommend this setting!

You may already wonder if the variables keep their values even when the
macro has ended. Usually they dont. The computer would eventually run out of
memory if variables stayed in the memory. Variables are visible to a certain part
of the VBA environment. This part of the environment is know as the variables
scope. Unless you tell VBA differently the variable will disappear when the VBA
interpreter leaves the variable scope. There are in principle 3 different scopes in
VBA:

e Procedure
e Module
e Global

Variables with procedure level scope have their declaration within a procedure
(a Sub or macro). They disappear when the macro ends. Module level scope
variables are declared at the beginning of the module before any macro code.
For instance right after the Option Explicit statement. They are visible to all
macros in that module, and they will keep their values even after a certain
macro has ended. Dont use these unless you absolutely need them, since they
take up memory even when the macros have ended. Global or public variables
are visible to all modules in the workbook, and should be declared with a Public
statement at the module level:

Public Temperature As integer

17

You should also use these with caution or not at all. Personally I have never
really needed them, so you should be able to do without them for a while at
least. A special case of procedure level variables are the static variable. They
are declared in the procedure (or macro) and keep their value even after the
macro has ended, but they are only visible to that procedure:

Sub myMacro()

Static Counter As integer
Counter = Counter + 1

End Sub

They are useful for keeping track of the number of times a certain macro has
been called.

4.1.3 Object variables

Variables with an object data type have their values assigned in a little different
way, and they deserve special attention. Object variables are variables containing
a reference to a certain object. This could be a sheet, a chart, a range etc. The
object variable would have the same properties and methods as the object itself,
and changing the variable affects the object. To assign an object to an object
variable you need to use the Set statement. The following example illustrates
the use of object variables. They are also used elsewhere in this document.

Sub ObjTest ()
Dim theRange As Range
Set theRange = ActiveSheet.Range("A1:C25")
theRange.Value = 19

End Sub

4.1.4 Built-in constants

You are allowed to declare constants yourself as mentioned above, but VBA also
has a wide range of built-in constants. The purpose of these constants is the
same as the constants you declare yourself. They can be used to make the code
easier to read, and they allow certain values to be changes, and the code would
still work. We have already seen an example of these built-in constants in the
example with changing the page orientation. We saw that the page orientation
could be changed to landscape with the following statement:

ActiveSheet.PageSetup.Orientation = xlLandscape

In this case xlLandscape is a built-in constant in Excel. It really holds a value.
If you want to know the value of a built in constant try the following sub:

Sub ShowValue()
MsgBox xlLandscape
End Sub

Running this sub should illustrate that xlLandscape really holds the value 2.
Other built-in constants hold other values. This means that me could also have
changed the page orientation to landscape with the macro:

ActiveSheet.PageSetup.Orientation = 2

18

The first version of the macro is much easier to read, and the built-in constants
should always be preferred over hard coding the numbers.

4.2 Functions and subroutines

The terms functions, procedures, subroutines and macros have already been
mentioned, but not properly defined. In principle all of the mentioned terms
cover the same concept, but just to make things clear we will define them.

4.2.1 Definitions

A function is a general term used in programming. A function is a structure
that requires some sort of data and based on this data, it perform a series of
operations and finally returns a value. We know functions from the spreadsheets.
For instance the ”Average” function takes a series of numbers (or ranges of
numbers) as its arguments (we call the data needed by the function arguments)
and returns the average of these values. Some functions need several arguments,
others can work without arguments (the Rand worksheet function), but usually
they return one value and one value only. There are examples of function that
dont return values. We have already seen the MsgBox function. This function
opens a dialog box and displays a message to the user.

Subroutines, procedures and macros are the same thing. A subroutine is
defined with the Sub keyword. A subroutine is a procedure, and the subroutine
can be executed as a macro in Excel. So we will use the terms where they seem
appropriate but they mean the same thing.

4.2.2 Declarations

Previous examples have illustrate how a subroutine or a macro is defined in a
VBA module. The Sub keyword declares the macro and it is followed by the
name of the macro. A list of parameters can be supplied in the parenthesis after
the name of the macro. The statements that should be executed by the macro
follow the sub declaration and the macro ends with an End Sub statement.
Arguments cannot be supplied for macros executed from Excel. The following
shows the declaration of a macro:

Sub MacroName ()
[Statements]
End Sub

Functions can also be declared. As mentioneed they need some arguments (in
some cases none) and they return one value and one value only. Functions cannot
be executed from Excel as macros, but they can be called from running macros
or used as worksheet functions in Excel. This allows you to design you own
worksheet functions for some calculation that you perform often. The following
example show a declaration of a macro, and a function. The macro calls the
function, and uses the return value in a display box.

Sub TryAdd()
MsgBox AddNumbers(34, 21)
End Sub

19

Function AddNumbers(NumberOne As Integer, NumberTwo As Integer)
AddNumbers = NumberOne + NumberTwo
End Function

The example also illustrate how the functions return their value. An internal
variable in the function with the same name as the function holds the return
value. The value of this variable is returned when the function exits. After
declaration of the function you should be able to use it as a normal worksheet
function in your worksheet. Try entering the formula:

=AddNumbers (34;21)

The function also exists in the function wizard in the user defined category.

4.2.3 Using Worksheet functions

The functions normally used in the worksheets can also be used in macros,
unless VBA has a built-in function that does the same job. An example could
be calculation the mean of a Range:

Sub CalcAvg()
Dim theRange As Range
Dim result As Double
Set theRange = Range("A1:M100")
result = Application.WorksheetFunction.Average (theRange)
msgBox result
End Sub

You must use the qualified reference Application.WorksheetFunction to access
the worksheet function.

4.3 Controlling program flow

One of the advantages of programming your own macros is the ability to au-
tomate tasks. You can instruct Excel to do the same task over and over again.
To do this you need to be able to control the program flow. When you create
macros with the macro recorder you have no control over program flow. If you
want Excel to do the same task twice you have to record it twice or execute the
macro twice. This might work if you want to do something two or three times,
but it becomes annoying quite quickly. You may also be interested in control-
ling what VBA does based on certain values (a classic ”if something then do
something else” problem). This section will illustrate how to deal with these
problems in VBA.

4.3.1 GoTo statement

The GoTo statement is the simplest control structure in VBA. It basically allows
you to jump to labels you insert in the code. An example:

Sub GoToExample ()
GoTo MyLabel
MsgBox ("I have to execute every line of the code")

20

MyLabel:
MsgBox ("I have skipped part of the code")
End Sub

Running this macro should illustrate how the GoTo statement is used. It should
also illustrate why you should avoid using the statement. Your code becomes
very messy and difficult to read, and you tend to get unexplainable behavior in
you macros, because you loose track of the program flow. The GoTo statement
has one useful pupose. This is illustrated in the section on error handling. If you
cant find an alternative for the GoTo statement, think harder!

4.3.2 If-Then-Else statements

If statements are the most widely used control statements in VBA. If you only
learn one control statement this should be the one. In the simplest form it is
very easily understood, but nested if statements can get complicated as we shall
see. The basic form of the if statements is:

If [Condition] Then
[Statements]

Else
[Statements]

End if

An example of the use of an If statement could look like this:

Sub ExampleIf ()
Dim name As String
Dim userName As String

name = Application.userName
userName = InputBox("Enter you name, please!")
If name <> userName Then
MsgBox ("This is not your computer. Username is " & name)
Else
MsgBox ("This is your computer")
End If
End Sub

This example also illustrates other features of VBA that cannot be recorded with
the macro recorder. The InputBox function is very useful for getting information
from the user. It displays a string (some text) to the user and returns the
information typed by the user. It also illustrate how to extract the username. It
should be mentioned that this macro is not complete. Just try clicking cancel
in the dialog box.

If statements can be nested. This means that you can have an If statement
inside another if statement. The general form would be:

If [Condition] Then
If [Other condition] Then
[Statements]
Else

21

[Statements]
End If
Else
[Statements]
End if

You can nest as many if statements inside each other as you please, but it gets
complicated and you might loose track of what you are doing. Generally avoid
more than three or four nested If statements.

You can also modify the If statements with an Elself. Its much harder to
explain than to understand. The general form is:

If [Condition] Then
[Statements]

Elself [Condition] Then
[Statements]

Else
[Statements]

End if

The following example illustrates the use of the structure:

Sub Greeting()
If Time < 0.5 Then
MsgBox "Good Morning"
ElseIf Time >= 0.5 And Time < 0.75 Then
MsgBox "Good Afternmoon"
Else
MsgBox "Good Evening"
End if
End Sub

Look for other examples of If statements in this documents, and play around
with the structure until you feel you are comfortable with it. As mentioned this
is a very important control structure.

4.3.3 Select Case structure

The If-Then-Else statements can as mentioned be nested and make is possible to
choose between many different possibilities. They tend to get a bit complicated,
and the code tends to look messy if you use to many nested If statements.
When you need VBA to choose between lots of different options, the Select
Case structure is a better solution. The general form is:

Select Case [Expression]
Case [Expression]
[Statements]
Case [Expression]
[Statements]
Case Else
[Statements]
End Select

22

In a practical example it could look like this.

Sub WhoAreYou()
Dim username As String
username = Application.UserName
Select Case username
Case "Bill Gates"
MsgBox "You are rich"
Case "Michael Schacht Hansen"
MsgBox "You teach VBA"
Case Else
MsgBox "You are unknown, Welcome"
End Select
End Sub

You should use the Select Case structure when making choices based on more
than three or four possibilities. It makes the code easier to read, and prevents
errors. Select Case Structures can also be nested, and you can have If structures
nested inside the Select Case structures.

4.3.4 For-Next loop

VBA provides a number of different loop structures. The loop structures allows
you to ask VBA to repeat the same task for a certain number of times. This
cannot be done with the recorder. The first and perhaps the most widely used
of these loop structures is the For-Next loop. This structures uses a counter to
determine the number of times a certain set of statements have been executed.
The general form is seen below:

For counter = startValue To endValue [Step stepValue]
[Statements]
Next counter

The step value is optional. If no step value is provided, the counter value is
incremented by one on each run through the loop. A practical example:

Sub FillCells()
Dim counter As Integer
For counter = 0 To 100 Step 2
ActiveCell.Offset(counter, 0).Value = Rnd()
Next counter
End Sub

I think running the example pretty much explains what it does. If statements,
Select Case statements etc. can be nested in the loops. This way decisions can
be made on each run through the loop. If for some reason you want to exit the
loop based on a decision include an ”Exit For” statement.

4.3.5 Do-While and Do-Until loop

Another example of a loop structure is the Do-While:

23

Do While [Condition]
[Statements]
Loop

Again a practical example:

Sub ExampleDo ()

Do While ActiveCell.Value
ActiveCell.Font.Bold = True
ActiveCell.Offset (1, 0).Select

Loop

End Sub

A variation of the Do-While loop, is the Do-Until. The above example could
have been made with a Do-Until structure:

Sub ExampleDo ()

Do Until ActiveCell.Value = Empty
ActiveCell.Font.Bold = True
ActiveCell.Offset (1, 0).Select

Loop

End Sub

I think that the examples explain themselves. Enter them in a module and try
them out. Change some of the statements and observe the effect.

4.3.6 Error handling

It was mentioned that the GoTo statement can be used in a constructive fashion
to handle errors. The errors in question are the so-called intentional error. The
principle is as follows. You ask VBA to perform a loop, knowing that sooner or
later it will fail for some reason. When that happens you use a GoTo statement
to exit the loop without the whole macro failing. The code for such an error
handling could look like this:

Sub ReadFiles()
Dim x As Integer
Dim fileName as String

On Error GoTo NoMoreFiles

For x = 1 To 1000
fileName = "File" & x
Workbooks.OpenText _
Filename:=fileName, _
Origin:=x1Windows, StartRow:=1, _
DataType:=x1Delimited, TextQualifier:= _
x1DoubleQuote, ConsecutiveDelimiter:=False, _
Tab:=True, Semicolon:=True, _
Comma:=False, Space:=False, Other:=False, _
FieldInfo:=Array(1, 1)

Next x

24

NoMoreFiles:
MsgBox "There are no more files"

End Sub

This example opens a series of text files (named Filel, File2...) until there are
no more files, in which case the OpenText statement would fail, and cause and
error. This error leads to a GoTo statement, and we can handle the error in a
suitable way. The OpenText part of the macro may seem complicated, but you
can easily make a statement like this. Just record the action, and modify the
statement. In this case change the file name to a variable.

5 Working with Ranges

The handling of ranges might not be a large topic in VBA, but most of the
macro programming work you will do will somehow involve the use of ranges.
For this reason the Range object deserves a section of its own.

5.1 Referencing ranges

Ranges can be referenced in a number of different ways. The simplest way is to
use the address of the range. This would allow you to reference a range like this
(we have not used the fully qualified reference):

Range ("A1:B6")
Or if the range has a name:
Range ("RangeName")

The above statements reference a range in the active sheet. If you wanted a
range in another sheet or even in another workbook, you would need to include
the name of the workbook and sheet in the reference. This would look like this:

Workbooks ("MyWorkbook.x1s") .Sheets(1) .Range ("A1:A6")
You can reference entire columns or rows with statements like:

Range("A:B")
Range("1:3")

Ranges can also be non-continuous (some function cannot use non-continuous
ranges):

Range("A1:B6,D5:M8")

As mentioned the Ranges can be assigned to object variables and referenced
through these:

Dim theRange As Range
Set theRange = Range("A1:B6,D5:M8")

25

There are other ways of referencing Ranges. You might be interested in using
row and column numbers instead of actual addresses. This can be accomplished
with the Cells property. This property belongs to the worksheet object, and it
returns a range object containing one cell. For instance the statement

Cells(2,3)

Returns the single cell range with row number 2 and column number 3, in other
words the Range C2. To use the Cells property to design multi-cell ranges,
combine it with the Range keyword like this:

Range (Cells(2,3), Cells(4,4))
This is equivalent to
Range ("C2:D4")

Another possibility is to use the Offset method of ranges. This allows you to
reference Ranges with a specific offset from a defined range. An example:

Range("A1").0ffset(2,2)

This would be equivalent to

Range ("C3")

This should give you an idea of the many different ways to reference Range

objects.

5.2 Properties of Range objects

Range objects have many different properties, but some are more useful than
others. This is just a quick walk through some of the more important ones.

5.2.1 Value property

The value of a cell can be read with the Value property. You can set the value
of several cells at the same time with the value property of a multi-cell range.
Try the following statements:

MsgBox Range("C3").Value
or change the value in several cells with
Range ("C3:K100") .Value = 1000

Value is also the default property of Excel Ranges so the above could have been
accomplished with

Range ("C3:K100") = 1000

But I think the Value property should be included, since it makes the code easier
to read.

26

5.2.2 Count property

The number of cells in a range can be counted:

Range ("C3:K100") .Count

Alternatively the rows or columns can be counted with:
Range ("C3:K100") .Rows.Count

Range ("C3:K100") .Columns.Count

5.2.3 Font and Interior property

Font and Interior properties return Font and Interior objects. These allow you
to do a lot of formatting on cells. The following are just examples of what can
be done. The are lots of other options. Please check the object browser to see
what can done. To manipulate the Font you could write:

Range("A1") .Font.Bold = True
This would set the font to bold. The Interior color of a cell can be set like this:
Range("A1") .Interior.Color = RGB(255,0,0)

This would set the color of the cell interior to red. Try other options.

5.2.4 Entering formulas in cells

Ranges have a Formula property. This property can be manipulated like most
other properties. First of all you might be interested in checking if a cell has a
formula. This can be done with the HasFormula property:

MsgBox Range("A1") .HasFormula
Based on this test you may or may not be interested in entering a formula:

If Range("Al1") .HasFormula Then
Range("A1") .Formula = "=AVERAGE(A1:C17)"
End If

5.2.5 Select method

Select if often used to make some cells the active cells. After this the cells can
be referenced with the word Selection. An example:

Dim theRange As Range
Range ("A1:C4") .Select
Set theRange = Selection

27

5.2.6 Copy and Paste

The copy and paste methods are used as they are when you work normally in
your spreadsheet. You select a range, copy, put the cursor somewhere else and
paste. When you record such a procedure it looks somewhat like this:

Sub Macrol1()
Range ("A1:C25") .Select
Selection.Copy
Range ("K1") .Select
ActiveSheet.Paste

End Sub

As mentioned the macro recorder is not exactly brilliant, and the same operation
could been done with the following:

Sub Macrol1()
Range ("A1:C25") .Copy Range("K1")
End Sub

That saves you three lines, makes the code easier to read, and you feel smarter
than the computer.

5.2.7 NumberFormat property

The NumberFormat property is really simple and very useful. To change the
number format of a Range to percent with two decimals, use the statement:

Range ("A1") .NumberFormat = "0.00%"

Its easy and useful. If you have difficulty figuring out how to specify the number
format in the correct way, just try recording when you change the format for a
Range, and use the format specifier that was recorded.

5.3 Range methods

This will also just be a brief summary of the most useful methods of the Range
object.

5.3.1 Clear and Delete methods

I have to admit that I almost never use these methods, but they are always
mentioned in VBA books, and since there is a difference in the way that they
work, they should also be mentioned here. With the statement

Range("A1:C25") .Clear
you remove the contents of the range, with the statement
Range ("A1:C25") .Delete

you remove the contents and the cells. Excel shifts the remaining cells to fill
in the space. You can specify the direction Excel should move the cells. An
example:

Range("A1:C25") .Delete x1ToLeft

The built-in constant xlToLeft could be replaced with another of the direction
constants (xIToRight, x1Up, xIDown).

28

6 Chart objects - programming charts

6.1 Introduction

The chart object is the largest most complicated object in excel visual basic
programming. It is also very powerful and versatile. Knowing how the chart
objects work will help you to create macros that let you visualize your data
very quickly, and that can be very useful.

This section is a more systematic description of the most widely used ele-
ments of the chart object. It describes how to create a chart from scratch. The
features mentioned here are only a fraction of the ones available to you, check
the object browser or books on writing excel macros for further information.

6.2 Creating a chart object

A chart can exist in two different ways in excel. The chart can either be a
standalone sheet with nothing but a chart on it or it can be a ChartObject
embedded in a sheet. This may sound confusing (and it probably is), but to
make it really simple you have to choices: The chart has a sheet of its own or
it is placed in another sheet. Once created there is not much difference in how
they are manipulated. In either case the most elegant way to create charts is to
simultaneously create them and store a reference to them in an object variable
and then access all the properties of the chart through that variable afterward.
To create a standalone start you declare a Chart variable and then create the
instance of the chart. The following example creates a new, empty chart on a
new sheet and names the sheet My Chart:

Dim ch As Chart
Set ch = ThisWorkbook.Charts.Add()
ch.Name = "My Chart"

To create the embedded chart you need to create a new ChartObject in the sheet,
and access the chart through this ChartObject. The following example creates
a ChartObject in the active sheet and places it at the coordinates (0,0,100,100):

Dim co As ChartObject
Set co = ActiveSheet.ChartObjects.Add(0,0,100,100)

Elements in the chart of the chart object can now be accessed through the
ChartObject. The following example sets the chart type to xlLine for both the
embedded and the standalone chart:

ch.ChartType = xlLine
co.Chart.ChartType = xlLine

Everything from here on should be the same for the embedded and the stan-
dalone chart.
6.3 Formatting the chart

To illustrate all the formatting features in the Chart object would be beyond
the scope of this document, but an illustration of how a chart is created and
formatted with its most basic features can be done quite easily within a resonable

29

amount of space. In this example we will create an embedded scatter plot and
change some of the features of the plot. First the ChartObject has to be created
and a ChartType must be chosen:

Dim co As ChartObject
Set co = ActiveSheet.ChartObjects.Add(0,0,300,400)
co.Chart.ChartType = x1XYScatterLines

Running this routine will just create a blank area embedded in the active sheet.
A blank chart is not of much use, so we should add some data. The following
lines will add two data series, and do some formatting afterward:

co.Chart.SeriesCollectiOn.Add _
Source:=ActiveSheet.Range("A1:A25"), _
Rowcol:=x1Columns

co.Chart.SeriesCollection.Add _
Source:=ActiveSheet.Range("B1:B25"), _
Rowcol:=x1Columns

With co.Chart.SeriesCollection(1)
.XValues = ActiveSheet.Range("C1:C25")
.Name = "1st Series"

.MarkerStyle = x1None
.Border.Weight = x1Medium
End With

With co.Chart.SeriesCollection(2)
.XValues = ActiveSheet.Range("C1:C25")
.Name = "2nd Series"

.Border.LineStyle = x1None

.MarkerForegroundColor = 1

.MarkerBackgroundColor = 1
End With

Actually the code explains itself, but just to set things straight. The first two
statements (the statements are broken into 3 lines each) add the two data data
series, by telling where two find the data and if the data are in columns or rows
of the specified range. This is much better illustrated if you just change it to
xlRows and see the difference. The next group of statements formats the first
data series. X-values are specified (this is needed with a scatterplot), and the
markers are removed, and the line made thinner. The last group of statements
formats the last data series by removing the line and setting the marker color to
black. The are tons of other attributes to test and set in the data series. Look
them up in the object browser and play with them.

The next thing that we should do is to format the chart axes to suit our
needs. By default value and category axes are added, but just to illustrate the
procedure we will add them in the following example. We will also add titles
on the axes illustrating what the axes show. Gridlines are added and formated
through the axes property of the chart object and we will in the following
example set the grid lines (in this case turn them off).

30

’Add axes

’This is the default setting

With co.Chart
.HasAxis(x1Category, xlPrimary) = True
.HasAxis(x1Category, xlSecondary) = False
.HasAxis(x1Value, x1Primary) = True
.HasAxis(x1Value, x1lSecondary) = False

End With

’Formatting the category axes

With co.Chart.Axes(x1Category)
.HasTitle = True
.AxisTitle.Caption = "Category Title"
.HasMajorGridlines = False
.HasMinorGridlines = False

End With

’Format the Value axes
With co.Chart.Axes(x1Value)
.HasTitle = True
.HasMajorGridlines = False
.HasMinorGridlines False
With .AxisTitle
.Caption = "Value title"
.Font.Size = 6
.Orientation = xlHorizontal
.Border.Weight = x1Medium
End With
End With

The last thing we need to do is to format the chart area (the whole area) and
the plot area (the area where the chart is actually drawn. In this case we will
set both to be white (suitable for printing on a black and white printer). Also
we should give the chart a title (at least thats what we will do in this situation).

co.Chart.ChartArea.Interior.Color = RGB(255,255,255)
co.Chart.PlotArea.Interior.Color = RGB(255,255,255)

co.Chart.HasTitle = True

With co.Chart.ChartTitle
.Caption = "My new chart"
.Font.Size = 14
.Font.Bold = True

End With

This would create a chart and format it to your needs. We have only just
scratched the surface in this section, but this standard approach should get
you going and hopefully you will feel comfortable enough to venture on and
locate other attributes of the chart object on your own. Having ready made
macros for creating and formatting charts can save you lots of time.

31

It is very annoying (at least to me) to do the same formatting over and
over because Microsoft didnt format the charts to be printed or viewed for that
matter.

7 Examples - Using VBA

VBA is easier understood through practical examples. This sections solves a
variety of problems using the features illustrated in the previous sections.

7.1 Statistics Creating Bland-Altman plots

Bland-Altman analysis is used to compare two series of measurements of the
same parameter. The difference between the two series illustrates a methods
ability to reproduce or repeat a certain measurement. By calculation the 95
percent limits of agreements we are able to get an idea of the change to a
given stimulus that could be detected with the method. Bland-Altman analysis
includes:

e Calculation of means.
e Calculation of differences.

Calculation of mean difference.

Calculation of standard deviations of differences.

Calculation of 95 percent limits of agreement for the differences.
e Displaying the information in a chart.

We will do all the calculations one step at a time, and save all the calculation
results in a separate sheet before drawing the chart. The macro should be de-
signed in such a way that the user should select two columns of data containing
the two series and then run the macro for the analysis. The first tasks are then
storing the data in a Range object and inserting a new sheet for the calculations:

Option Explicit

Sub BlandAltman()
Dim dataRange As Range
Set dataRange = Selection
Sheets.Add after:=Sheets(Sheets.Count)
ActiveSheet.Name = "Bland-Altman"

The next step is to insert some headlines for the calculations in the new sheet:

Range("A2") .Value = "Mean"

Range ("B2") .Value = "Difference"
Range("C2") .Value = "Mean difference"
Range ("D2") .Value = "SD"

Range ("E2") .Value = "Mean diff + 2 SD"
Range ("F2") .Value = "Mean diff - 2 SD"
Range ("A2", "F2") .Font.Bold = True

32

Now we need to calculate the mean, and difference of each data pair in the
range, and insert this mean, and difference in the Mean and Difference columns
of our result sheet:

Dim t As Integer
For t = 1 To dataRange.Rows.Count ()

Cells(t + 2, 1).Value = _
Application.WorksheetFunction. _
Average(dataRange.Cells(t, 1).Value, _
dataRange.Cells(t, 2).Value)

Cells(t + 2, 2).Value = _
dataRange.Cells(t, 2).Value - _
dataRange.Cells(t, 1).Value

Next t

The next step is to insert Mean Difference, Standard Deviation and 95 percent
limits of agreement in the appropriate rows. The last line adjusts the width of
the cells to allow the results to be viewed properly.

Range(Cells(3, 3), _
Cells(dataRange.Rows.Count() + 2, 3)).Value =
Application.WorksheetFunction. _
Average (Range (Cells(3, 2), _
Cells(dataRange.Rows.Count() + 2, 2)))

Range(Cells(3, 4), _
Cells(dataRange.Rows.Count() + 2, 4)).Value =
Application.WorksheetFunction. _
StDev(Range(Cells(3, 2), _
Cells(dataRange.Rows.Count() + 2, 2)))
Range(Cells(3, 5), _
Cells(dataRange.Rows.Count() + 2, 5)).Value =
Cells(dataRange.Rows.Count() + 2, 3) + _

2 * Cells(dataRange.Rows.Count() + 2, 4)

Range(Cells(3, 6), _
Cells(dataRange.Rows.Count() + 2, 6)).Value =
Cells(dataRange.Rows.Count() + 2, 3) - _

2 * Cells(dataRange.Rows.Count() + 2, 4)
Cells.EntireColumn.AutoFit

Now we should visualize our data with a Bland-Altman plot. In this plot, we
plot the differences as a function of the mean, and we place a horizontal bar at
the mean difference and at the 95 percent limits of agreement. The first step is
to define the chart and an object variable to reference it. In this case we embed
the chart in the result sheet.

Dim ch As ChartObject

Set ch = Worksheets("Bland-Altman"). _
ChartObjects.Add (100, 30, 400, 250)

ch.Chart.ChartType = x1XYScatterLines

33

Then we need to add all our data series. We will format them later. I admit we
could have added the data in a loop and avoided repeating the same statement,
but with a little copy and paste this is actually faster than keeping track of a
variable, and I know than we would not need to add other series later.

ch.Chart.SeriesCollection.Add _
Source:=ActiveSheet.Range(Cells(3, 2), _
Cells(dataRange.Rows.Count() + 2, 2)),
Rowcol:=x1Columns

ch.Chart.SeriesCollection.Add _
Source:=ActiveSheet.Range(Cells(3, 3), _
Cells(dataRange.Rows.Count() + 2, 3)),
Rowcol:=x1Columns

ch.Chart.SeriesCollection.Add _
Source:=ActiveSheet.Range(Cells(3, 5), _
Cells(dataRange.Rows.Count() + 2, 5)),
Rowcol:=x1Columns

ch.Chart.SeriesCollection.Add _
Source:=ActiveSheet.Range(Cells(3, 6),
Cells(dataRange.Rows.Count() + 2, 6)),
Rowcol:=x1Columns

Now we format the series. In this case each series need individual formating,
since some should be lines and some points, and we want different thickness and
SO on.

With ch.Chart.SeriesCollection(1)

.XValues = ActiveSheet.Range(Cells(3, 1), _
Cells(dataRange.Rows.Count () + 2, 1))

.Border.LineStyle = x1None
.MarkerForegroundColor = 1
.MarkerBackgroundColor = 1
.Name = "Difference"

End With

With ch.Chart.SeriesCollection(2)
.XValues = ActiveSheet.Range(Cells(3, 1), _
Cells(dataRange.Rows.Count() + 2, 1))
.MarkerStyle = x1None
.Border.Weight = x1Medium
.Border.Color = 1
.Name = "Mean diff."
End With

With ch.Chart.SeriesCollection(3)
.XValues = ActiveSheet.Range(Cells(3, 1), _
Cells(dataRange.Rows.Count() + 2, 1))
.MarkerStyle = x1None

34

.Border.Weight = x1Thick

.Border.Color = 1

.Name = "Mean diff + 2SD"
End With

With ch.Chart.SeriesCollection(4)
.XValues = ActiveSheet.Range(Cells(3, 1), _
Cells(dataRange.Rows.Count() + 2, 1))
.MarkerStyle = x1None
.Border.Weight = x1Thick
.Border.Color =1
.Name = "Mean diff - 28D"
End With

ch.Chart.Axes(x1Value) .HasMajorGridlines = False
With ch.Chart.Axes(x1Category)
.MinimumScale = Int(Application.WorksheetFunction. _
Min(Range(Cells(3, 1), _
Cells(dataRange.Rows.Count() + 2, 1))) - 2)
.MaximumScale = Int(Application.WorksheetFunction. _
Max (Range(Cells(3, 1), Cells(dataRange.Rows.Count() + 2, 1))) + 2)
End With

ch.Chart.PlotArea.Interior.ColorIndex = x1None
ch.Chart.PlotArea.Border.LineStyle = x1None
End Sub

The category axes of the chart is formated to not start with the value 0. This is
to avoid funny looking charts if the mean values are very high. Thats about it.
Try following the example. When you meet a function or keyword you havent
seen before, just enter it in a module, place the cursor over the word and press
F1. You will then get help on that word.

35

Visual Basic for Applications (VBA) is a powerful language built on top of popular Microsoft Office applications like Excel, Access, and
Outlook. It allows developers to write procedures called macros that perform automated actions. Anything that you can do in Excel, you
can automate with VBA! Over the course of more than 18 hours of content, we'll cover VBA from the ground up, beginning with the
fundamentals and proceeding to advanced topics including: The Excel Object Model. The Visual Basic Editor. Objects and Methods.
Variables and Data Types. Conceptual overviews, programming tasks, samples, and references to help you develop Excel solutions.A
Object model reference: Provides reference materials for the Excel object model. Graph Visual Basic reference. See also. Excel (Office
client development). Support and feedback. Have questions or feedback about Office VBA or this documentation? Please see Office
VBA support and feedback for guidance about the ways you can receive support and provide feedback. Visual Basic for Applications is
simplified impementation of Microsoft's programming language Visual Basic 6. VBA is used for automation operations in applications
such as Microsoft Excel and also expands it's capabilities. You can find VBA in all Microsoft Office applications, AutoCAD, WordPerfect
and many others. Visual Basic for Application appeared in Excel (Excel version 5) in 1994, earlier (up to version 4) only allow macros to
automate those tasks that you can perform using the keyboard. Now

